What Concerned Citizens Should Know About Water; The Most Important Public Health Problem of the 21st Century

Conrad (Dan) Volz, DrPH, MPH

• Assistant Professor, Environmental and Occupational Health, University of Pittsburgh, Graduate School of Public Health http://www.pitt.edu/~cdv5/
• Director - Center for Healthy Environments and Communities http://www.chec.pitt.edu
• Director, Environmental Health Risk Assessment Certificate Program
Factors making water management the most important global public health dilemma of the 21st Century.

• Urbanization, population expansion, industrialization, source contamination, watershed and habitat destruction and agriculture have placed severe strains on both surface and groundwater sources.
• In arid and semi-arid areas of the developed and developing world, water is being removed from fossil aquifers at unsustainable rates.
• Overuse of impounded and diverted surface water for agriculture is responsible for soil salination and decreasing crop yields.
• Groundwater pumping is also responsible for loss of riparian and wetland habitats, intrusion of saltwater and the movement of toxic and carcinogenic substances from contaminated vadose zones into potable water supplies.
• Worldwide, pathogens in water remain a central public health issue they are widespread, endemic and epidemic.

Volz, C. D. (2007). A framework to understand the centrality of protection and restoration of ecosystem services to water management and preparedness: An all-hazards approach with implications for NATO plans and operations; Strengthening national public health preparedness and response for chemical, biological, and radiological agent threats: Springer-NATO Advanced Science Institute Series-Skopje, Macedonia, IOS Press – Nieuwe 6B, 1013 BG.
Factors making water management the most important global public health dilemma of the 21st Century.

- In the USA, waterborne pathogens have caused epidemics largely via wet weather events causing sewer overflows and runoff combined with municipal drinking water treatment failures.
- Evidence that the effects of global warming are being and will be experienced largely through water quantity and quality deficits.
- The USA is facing a national water crisis, which has been termed “the freshwater imperative”\((\text{Naiman et al.}, 1995)\); water quantity and quality issues are important internal as well as external national security threats.
- Water resources are the basis for many inter and intra-governmental armed conflicts and have been the focus of regional political problems within the USA.

\textit{Volz, C. D.} (2007). A framework to understand the centrality of protection and restoration of ecosystem services to water management and preparedness: An all-hazards approach with implications for NATO plans and operations; Strengthening national public health preparedness and response for chemical, biological, and radiological agent threats: Springer-NATO Advanced Science Institute Series-Skopje, Macedonia, IOS Press – Nieuwe 6B, 1013 BG.
The Water Cycle

- Water storage in ice and snow
- Precipitation
- Snowmelt runoff to streams
- Infiltration
- Ground-water discharge
- Streamflow
- Surface runoff
- Freshwater storage
- Ground-water storage
- Water storage in oceans
- Condensation
- Transpiration
- Evaporation

U.S. Geological Survey
The fragility of freshwater supplies
http://ga.water.usgs.gov/edu/earthgwaquifer.html
Relationship Between Rainfall, Infiltration, Groundwater Flow and Stream-Lake Depth—Confirms the Intimate Relationship Between Surface Water and Groundwater
http://ga.water.usgs.gov/edu/earthgwdecline.html
Plume from Leaking Underground Storage Tank (LUST)

http://www.epa.gov/region01/students/pdfs/gwc1.pdf
The Full Monty of Groundwater Contamination

Figure 2

Some Potential Sources of Groundwater Contamination

What Are Water Contaminant Concentration Units?

ppm by weight = ppm$_w$ = mg/Liter

What is Exposure?

Contact between a human or other receptor, over some time period, with a concentration of contaminant. Water contaminant exposure modes are through ingestion, skin absorption or even inhalation. So for ingestion $E = Ct = \text{mg/L (days, weeks, months or years)}$.
How does water contaminant exposure relate to dose?

Exposure is concentration at a receptors intake surface over time while dose relates to the actual mass of a contaminant entering the body.

So $E = Ct$ and $D = E \times \text{Intake Rate (liters/time)}$

Therefore; $\text{Dose} = \text{mg/L(time unit)} \times \text{liters/time} = \text{mass}$
ESTIMATION OF EXPOSURE CONCENTRATIONS IN GROUND WATER

• It is most appropriate to use groundwater sampling data as estimates of exposure concentrations when the sampling points correspond to exposure points, such as samples taken from a drinking water tap.
• Exposure concentrations in ground water can be based on monitoring data alone or on a combination of monitoring and modeling.
• However, samples taken directly from a domestic well or drinking water tap should be interpreted cautiously. For example, where the water is acidic, inorganic chemicals such as lead or copper may leach from the distribution system. Organic chemicals such as phthalates may migrate into water from plastic piping.
• Therefore, interpretations of these data should consider the type and operation of the pumping, storage, and distribution system involved.

EPA RAGS
ESTIMATE EXPOSURE CONCENTRATIONS IN SURFACE WATER

- Data from surface water sampling and analysis may be used alone or in conjunction with fate and transport models to estimate exposure concentrations.
- Where the sampling points correspond to exposure points, such as at locations where fishing or recreational activities take place, or at the intake to a drinking water supply, the monitoring data can be used alone to estimate exposure concentrations.
- But you will need water intake data, which is dependant on many variables to estimate consumption! And consumption data is necessary to calculate dose of a contaminant-which again is mass.
- Can use questionnaires to estimate consumption from different water sources.
- Frequently a dose rate is calculated, which is the mass of contaminant taken into the body per unit of time.

EPA RAGS Chapter 6
Contaminant Transport Processes in Surface and Groundwater

• Gravity driven advective transport.
• Fickian Forces-Diffusion, dispersion and turbulence.

1. Mass of a chemical spreads out as it moves downriver according to velocity sheer (dispersion) and turbulent diffusion.

2. Distribution of chemical mass will elongate in the direction of river flow due to water moving slower near the banks, bottom and surface.

3. The greater the spatial variability in V and the greater the turbulence the greater the mixing of chemical mass (contrast rapids at Ohiopyle to the Monongahela River).
Definition-Water Management

- Water management refers to an integration of traditional and non-traditional public health issues that are very often treated separately like drinking water treatment, sewage, water contamination by toxic chemicals and metals, water quantity, stormwater and drainage, flooding, watershed protection and associated development and transportation project considerations.

- Each facet of water management goes together to form an interlocking whole, while single issues should be explored in depth in order to focus more attention on solutions – the effects of those solutions need to be incorporated in a holistic water management model.

USA Pathogens and Water Problems

- Many policymakers are under the impression that waterborne infectious diseases are now only of historical interest. These attitudes and perceptions need to be challenged because both endemic and epidemic waterborne disease occurs within the United States.
- Outbreaks of waterborne gastroenterititc disease are associated with ingestion of surface water contaminated with pathogenic bacteria, viruses and parasites. Ingestion of groundwater contaminated by failing on-lot septic systems, municipal sewage system failures and flooding have resulted in viral gastroenteritis (Hedberg and Osterholm, 1993).
- Although the burden of waterborne disease has decreased precipitously since the advent of modern filtration and purification, recreationalists (swimmers, boaters, and anglers) and home well water users remain at high risk for exposure to human pathogens.
- Municipal water systems sometimes fail to identify pathogens in water in real time and this has lead to a recent massive epidemic and numerous smaller outbreaks of gastrointestinal waterborne illness.

The Evidence

- There was a steady and significant increase in the number of recreational water gastroenteritis related disease outbreaks reported between 1989 and 2000 (Gerberding et al., 2002).
- The number of recreational outbreaks in 1998 was the highest seen since the inception of the CDC, EPA and Council of State and Territorial Epidemiologists (CSTE) waterborne disease tracking system in 1971.
- In the period between 1999 and 2000 Cryptosporidium parvum accounted for 44.4% of the outbreaks.
- Other outbreaks of known etiology were E. coli O157 (a bacteria that has caused deaths amongst children swimming in lakes), Norwalk-Like viruses and Shigella (4 species- bacteria).

Volz and Christen, 2006
Cryptosporidium parvum a human and animal intracellular parasite, has become the most important USA waterborne illness over the last 20 years.

- Its oocysts, shed by infected people into sewage systems and domestic and wild animal carriers into drainage basins and manure piles, are very resistant to environmental conditions, wastewater treatment and water purification (Robertson et al., 1992).
- Oocysts shed into the sewer system are released directly into our streams and rivers and groundwater during combined sewer overflows (CSO’s), sanitary sewer overflows (SSO’s), and wastewater treatment plant failures.
- A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply affected approximately 400,000 people with mild, moderate and severe watery diarrhea in 1993 (Mackenzie et al., 1994), deaths among the immunocompromised (the sub-population with HIV-AIDS, those receiving chemotherapy etc.) were reported (Hoxie, 1997) and the mortality rate among infected, immunocompromised individuals was estimated to be over 50% (Rose, 1997).
- The outbreak resulted in an estimated total cost of over US $93 million including direct medical costs and productivity losses (Corso, 2003). It is important to note that this outbreak was associated with high water runoff from snowmelt and precipitation, high water turbidity (cloudiness) at water intakes, and a failure of the water filtration system (this includes failure to recognize the increasing concentrations of the parasite in real time both in Lake Michigan and at the treatment plant).
Wet Weather Events and Pathogen Disease Outbreaks

- There is a strong correlation between the occurrence of both high monthly precipitation and wet weather events and disease outbreaks (Rose et al., 2000) (Curriero et al., 2001).

- Surface water outbreaks occurred most often in the month following the wet weather event and groundwater outbreaks were associated with a 2-month lag period between the precipitation event and waterborne disease outbreaks.
Southwestern Pennsylvania-CSO’s, SSO’s, and Runoff-Association with Increases in Fecal Coliform Bacteria, Cryptosporidium, and Giardia Parasites

- Contamination of main stem rivers in Southwestern Pennsylvania by fecal coliform bacteria (FC) has greatly exceeded the national average violation rate for human contact from 1976-1995, sometimes by a factor of 2.
- Pittsburgh lead all other major cities in the Ohio River Basin in the percent of surface water samples violating the safe contact FC standard during the 2000-2001 recreational season, at 59%. By contrast Cincinnati was in violation in 16% of water samples.
- Water sampling performed by the United States Geological Survey during the recreational boating seasons from 1980-1995 at New, Kensington on the Allegheny River and at Braddock on the Monongahela River were in violation of FC standards in 72% and 97% of samples, respectively.
- Eighteen (18) area streams have significant bacteriological contamination and extreme cases have exceeded standards by a factor of 200 and 1000, respectively.
Southwestern Pennsylvania Pathogen Problems

• The human parasites giardia and cryptosporidium are present at highly elevated levels at and downstream from CSO’s both in Pittsburgh and in feeder streams.

• FC have been shown to be in excess of water quality standards over the past 25 years in both the Allegheny and Monongahela rivers (WSIP, 2002).

• From July to September of 2001 the United States Geological Survey in partnership with the Allegheny County Health department sampled water from the Allegheny, Monongahela and Ohio Rivers for fecal coliform, E. coli and enterococci. They found that wet weather samples exceeded standards in 56%, 71% and 81% of total samples for FC, E. coli and enterococci, respectively (Fulton and Buckwalter, 2001).

• There have been reports from angling recreationalists in the Pittsburgh region of gastrointestinal problems associated with water contact following wet weather releases of sewage (Volz and Christen, 2007. Focus Group Results Indicate Recreationalists are at High Risk for Gastrointestinal Disease After Contact with River Water. Journal of Occupational Environmental Medicine, January 2007.

• There is a direct correlation between wet weather and CSO, SSO and stormwater runoff and an increase in FC concentrations in the Three Rivers of Pittsburgh.

• The City of Pittsburgh and County of Allegheny have more CSO’s and SSO’s (over 300) than any city in the United States. These deposit over 16 billion gallons of raw sewage in the Three Rivers every year.

Combined and Sanitary Sewer Overflows in the ALCOSAN Sewershed, Allegheny County, PA.

Relationships Between Fish Index of Biotic Integrity (IBI) and Pathogens in Mainstem Rivers and Tributaries of the Three Rivers

THREE RIVERS SECOND NATURE PHASE IV REPORT Integration and Review of Phases I, II, and III Chemical, Physical, and Biological Data, Collected from streams Tributary to the Allegheny, Monongahela, and Ohio Rivers in Allegheny County, Pennsylvania, and Characterization of Tributary Streams Based on Stream Water Quality and Ecosystem Health 2000-2003; Carnegie Mellon University.
Editors; Miller, T., Gorley, T., and Baron, B., Author; Volz, C.D., 2007. “Southwestern Pennsylvania’s Water Quality Problems and How to Address Them Regionally”, Institute of Politics, University of Pittsburgh, 60 pages.

Volz, C. D. A framework to understand the centrality of protection and restoration of ecosystem services to water management and preparedness: An all-hazards approach with implications for NATO plans and operations. In Maria Calpinskiene, MD, PhD, Curtis Cummings, MD, MPH, Nataliya Gudzenko, MD, PhD, Elin Gursky, ScD, Faina Linkov, PhD, Alessandra Rossodivita, MD, Eugene Shubnikov, MD, Elisaveta Stikova, MD, PhD, Andrey Trufanov, PhD, Conrad Volz, DrPH, MPH Editors, Strengthening national public health preparedness and response for chemical, biological, and radiological agent threats: Springer-NATO Advanced Science Institute Series, IOS Press – Nieuwe 6B, 1013 BG

Release of municipal and household sanitary wastes directly into area water.

Aging/inadequate municipal sewer infrastructure.

Wildcat sewers and failing on-lot septic systems.

Fragmentation of water and sewer planning and management.

Abandoned and active mines.

Issues related to nonsustainable development.

Lack of coordinated water and land management plans.

Development in headwaters and critical watersheds.

Sprawl.

Past and ongoing industrial pollution.

Contamination from the iron and steel industry.

Superfund, waste dump, and brownfield sites.

Deposition of contaminants from power plants and other industrial sources.

Nonpoint-source pollution.

Household hazardous waste.

Application of lawn pesticides and nutrients.

Road topping compounds.

Vehicle exhaust.

Past and present agricultural chemical use.

Personal and societal attitudes toward water usage.

Fragmented local, state, and federal regulatory climate.

Spills or accidental releases of toxic and hazardous substances.

Gravel and sand mining in mainstem rivers.

Drought.

Global Warming.
A Chain of Causation:
From Primary Water-Related Issues to Tertiary Environmental Public Health, Medical, Social, Emotional, and Economic Outcomes
Category 2: Water Contamination Problems

Pathogens.

Nitrates.

Heavy metals: mercury, lead, copper, chromium, and cadmium.

Arsenic: naturally occurring or from agricultural and/or industrial operations.

Volatile organic compounds (VOCs).

Contaminants associated with mine drainage.

Pesticides and herbicides.

Polychlorinated biphenyls (PCBs) and other organohalogen substances (OHSs).

Endocrine-disrupting compounds (EDCs).

Radon.

Highly acidic or alkaline water.

Editors; Miller, T., Gorley, T., and Baron, B., Author; Volz, C.D., 2007. “Southwestern Pennsylvania’s Water Quality Problems and How to Address Them Regionally”, Institute of Politics, University of Pittsburgh, 60 pages.
A Chain of Causation:
From Primary Water-Related Issues to Tertiary Environmental Public Health, Medical, Social, Emotional, and Economic Outcomes
Category 3: Loss of Ecological or Ecosystem Services

Wetland loss.
Deforestation.
Loss of topsoil and plant cover.
Loss of native plant species
Loss of subsoil integrity.
Loss of natural drainage patterns.
Uptake of contaminants in nature’s food web.

Changes in stream and river flow characteristics.
Decrease in groundwater recharge.
Land and streambed erosion.
Endocrine disruption in aquatic species and feeders.
Riparian habitat loss.

The Benefits from Preserving Stream Buffers

Pine Creek Assessment-2006
A Chain of Causation:
From Primary Water-Related Issues to Tertiary Environmental Public Health, Medical, Social, Emotional, and Economic Outcomes
Category 4: Secondary Water Management Outcomes

Human pathogens in surface water.

Human pathogens in groundwater.

Increased potential for mine blowouts.

Increased sediments in surface water.

Decreased production of clean surface water and groundwater.

Flooding.

Increased stormwater/snowmelt runoff.

Increased contaminant loads in surface water and groundwater.

Consumption of contaminated fish.

Human exposure to carcinogens, toxic substances, and endocrine active substances.

Editors; Miller, T., Gorley, T., and Baron, B., Author; Volz, C.D., 2007. “Southwestern Pennsylvania’s Water Quality Problems and How to Address Them Regionally”, Institute of Politics, University of Pittsburgh, 60 pages.
A Chain of Causation:
From Primary Water-Related Issues to Tertiary Environmental Public Health, Medical, Social, Emotional, and Economic Outcomes

Category 1: Primary Water-Related Problems
Category 2: Water Contamination Problems
Category 3: Loss of Ecological Services
Category 4: Secondary Water Management Outcomes
Category 5: Tertiary Environmental Public Health, Medical, Social, Emotional, and Economic Outcomes
<table>
<thead>
<tr>
<th>Loss of life and property due to flood damage.</th>
<th>Increased cost of flood insurance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased environmental asthma.</td>
<td>Increased risk of cancer, waterborne pathogen diseases, and other environmental diseases.</td>
</tr>
<tr>
<td>Increased stormwater management costs.</td>
<td>Unavailability of safe drinking water.</td>
</tr>
<tr>
<td>Increased cost of water purification.</td>
<td>USA intrastate, regional and interstate political conflict over water.</td>
</tr>
<tr>
<td>Decreased recreational and aesthetic value.</td>
<td>Water scarcity driven insurrections and interstate war.</td>
</tr>
<tr>
<td>Decreased economic growth.</td>
<td></td>
</tr>
<tr>
<td>Loss of aquatic and terrestrial species.</td>
<td></td>
</tr>
</tbody>
</table>

Volz, C. D. A framework to understand the centrality of protection and restoration of ecosystem services to water management and preparedness: An all-hazards approach with implications for NATO plans and operations., Strengthening national public health preparedness and response for chemical, biological, and radiological agent threats: Springer-NATO Advanced Science Institute Series, IOS Press – Nieuwe 6B, 1013 BG

http://www.pitt.edu/~cdv5/
Regional Policy Perspectives on “How to Break the Chain of Causation of Water Related Problems?”

• Treat Water as a Regional Asset with a Regional Approach.

• Use Integrated Water/Wastewater Planning.

• Educate Public Officials and Citizens on the Direct Relationship between Water Management and Public Health Issues

• Use Local University and Professional Strengths

• Encourage Stewardship of Both Public and Private Property

• Educational Programs Aimed at Lowest Possible Grade Levels Through Continuing Adult Education

• Enlist Anglers and Other Recreational Groups
Further Readings and Lecture References;

WISP. 2002. Investing in Clean Water: A Report by the Southwestern Pennsylvania Water and Sewer Infrastructure Project Steering Committee