Objectives

• Introduce “Industrial Hygiene”
• Establish context with respect to Risk Assessment
• Overview of Sampling
 – Purpose
 – Methods
 – Data
• Implications
Industrial Hygiene Definition

- **Industrial Hygiene**: Science and art devoted to the anticipation, recognition, evaluation, prevention, and control of those environmental factors or stresses arising in or from the workplace which may cause sickness, impaired health and well being, or significant discomfort among workers or among citizens of the community.
Industrial Hygiene

• Sometimes referred to as “occupational hygiene” (e.g. UK)
• Predates “Risk Assessment” as defined by NAS
• Combines elements of Risk Assessment
Comparison IH and Risk Assessment

<table>
<thead>
<tr>
<th>Industrial Hygiene</th>
<th>Risk Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipation and Recognition</td>
<td>Hazard Identification</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Toxicity and Exposure Assessment and Risk Characterization</td>
</tr>
<tr>
<td>Control</td>
<td>Risk Management</td>
</tr>
<tr>
<td>Hazard Communication</td>
<td>Risk Communication</td>
</tr>
</tbody>
</table>
Industrial Hygiene Exposure

- Industrial Hygiene focus is on exposure assessment
 - Historically the occupational environment
 - Expanded to home and community

Note: As the applications of exposure data grew in various fields, many new “specialties” formed (i.e., environmental engineering, radiation safety, risk assessment etc) and separated from Public Health.
“The purpose of industrial hygiene sampling is to represent the important components to the physiology of the worker and not to demonstrate the prowess of the chemist.”

Paraphrase from Hatch
Exposure Assessment Overview

- Exposure Assessment is NOT universally defined by users
- Exposure is not DOSE but seeks to estimate it
- Approaches and examples
 - Exposure Assessment in “Risk Assessment”
 - Occupational settings
Evolution of Exposure Assessment

• 1920’s
 – Occupational Exposures began to be quantified and related to workplace health (risk)
 – Result- Exposure limit values

• 1950,60’s
 – Environmental concerns, air and water pollution
 – Waste site Clean-up

• 1983
 – NAS “Risk Assessment Paradigm
 – “RAGS”
Why is Exposure Important?

Hatch
Exposure Assessment Goal

We can also consider Impairment as a function of increasing DOSE.
Fig 1.—Dose-respond relationship, with suggested distinction between basic (toxicologic and practical (health) scales on the three axes. The illustrative curve on the horizontal plane portrays the dose-response relationship for the middle (50%) of the exposed population; the curve on the vertical plane shows the percentages of population response of the indicated degree over the whole range of doses. The vertical line from the dose scale indicates the magnitude of dose needed to produce the indicated degree of response at the 50% population level.
Exposure Assessments typically include:

- Occupational exposures in the workplace,
- Exposures to the general population from chemicals in the air and drinking water,
- Consumer exposure through the household use of products, and
- Environmental exposure to aquatic life.
An EXPOSURE ASSESSMENT attempts to answer the following questions for a particular substance or chemical:

- **WHO or WHAT** is exposed (e.g., people, aquatic ecosystems, animals)?
- **WHAT IS THE ROUTE of Exposure**: Does the exposure occur through breathing air, drinking water, skin contact or any other routes?
- **HOW MUCH** exposure occurs?
- **HOW OFTEN and FOR HOW LONG** does exposure occur, that is, what is its frequency and duration?
An EXPOSURE ASSESSMENT attempts to answer the following questions for a particular substance or chemical:

- WHO or WHAT is exposed?
 - Humans, animals
- WHAT IS THE ROUTE of Exposure?
 - Ingestion, Inhalation, Dermal
- HOW MUCH exposure occurs?
 - Concentration of Chemical [mg/L or mg/kg]
- HOW OFTEN and FOR HOW LONG:
 - Frequency and Duration of Contact [TIME]
Exposure Measurement

- Measurement at the point of contact while exposure occurs
- Estimation from a scenario that evaluates contact variables
- Estimated from biomarkers related to uptake

EPA Exposure Assessment Guideline
Point of Contact Measurements

• Advantages-
 – Direct
 – Accounts for micro environmental variables
 – Specific to activity level
 – Direct relationship to biomarkers
 – Preferred over models

• Disadvantages
 – Subject to analytical prowess
 – Models can be incomplete or highly complex
 – Must be comprehensive or extrapolated to others
 – COST
Industrial Hygiene Sampling
Unique Value

- Representative monitoring data is preferred over models
- Industrial Hygiene data gathering has a long history and extensive technology
- Relates specifically to “exposure limit values” (TLV, PEL, OEL)
- Relates to historical biomarker information (Biological Exposure Indices – BEI)
IH DATA METRICS

- Time-weighted average
- Peak Exposure
- Short-term exposure
- Units
 - Ppm v/v in air
 - Mg /M3
 - Historical mmpcf
Exposure Assessment Strategy – IH Paradigm

(Slide 20)

AIHA Guidelines
Exposure Assessment Strategy – IH Paradigm

Purpose/Goals
To develop a comprehensive, qualitative evaluation of the workplace and to recognize the exposures of each worker.

Tools
- Workplace Characterization
 - Process/Operation Description
 - Chemical, Physical, and Biological Agent Inventory
- Work Force Characterization
 - Job Titles/Description
 - Task Analysis
 - Number of Workers
- Characterization of Agents
 - Health-Effects Data
 - Regulations
 - Exposure Limits and Guidelines
- Homogeneous Exposure Groups
 - Job Description Approach
 - Task-Based Approach
 - Chemical-Based Approach
 - Process/Job-Based Approach
 - Process/Job/Task Approach
 - Data Analysis Approach

Outcomes
- Complete inventory of workers, tasks, agents, and potential exposures
- Each worker assigned to at least one homogeneous exposure group
Some Exposure Variables

• Acute Exposure
• Chronic Exposure
• Source of the Agent
• Pathway for Exposure
Exposure Assessment Strategy

- Basic Characterization
- Qualitative Risk Assessment and Prioritization
- Exposure Monitoring

Purpose/Goals
To rank homogeneous exposure groups for monitoring; ranking to be based on a review of potential exposures and the health effects of the agents.

Tools
- Exposure Rating
 - Past Monitoring Data
 - Judgment (Analogy)
 - Modeling
- Health-Effect Rating
 - Chronic/Acute
 - Reversible/Reversible
 - Potential Consequences of Overexposure
- HEC Ranking
 - Exposure Rating
 - Health-Effect Rating

Outcomes
Ranking of homogeneous exposure groups for setting monitoring priorities.
Occupational Exposures

- “Often” air mediated – emphasis on “air sampling
- Usually a substantial dermal component that is not readily characterized
- “Skin notation”
STATES OF MATTER

- Dust
- Fume
- Mist
- Vapor
- Gas
- Aerosol
Walk Through Survey

- Become familiar with plant processes
- ID process chemicals and materials,
- Observe worker activities
- ID and examine existing exposure controls
- Start data collection record
Exposure Assessment Strategy
Industrial Hygiene Monitoring

(D)

Qualitative Risk Assessment and Prioritization

Exposure Monitoring

Interpretation and Decision Making

Purpose/Goals
To monitor actual exposures during a given time period and to diagnose critical sources of agent exposure in the workplace

Tools
Defining Routes of Exposure
- Sources of Exposure
- Exposure Pathways
- Critical Pathway ID

Monitoring
- Objectives
- Baseline
- Diagnostic
- Compliance
- Methods
- Personal
- Area
- Method Development
- Quality Assurance

Outcomes
Sets of exposure and/or concentration data that can be used to evaluate the acceptability of exposures among workers within homogeneous exposure groups and to devise effective control strategies
• Why sample?
• Who to sample?
• Where to sample?
• What to sample for?
• When to sample?
• How long to sample?
Evaluation of Workplace Hazards – Characterization of the Environment

OBJECTIVES OF AIR SAMPLING (WHY)

- Workplace Characterization
- Investigate employee complaints
- Effectiveness of engineering controls
- Effectiveness of administrative controls
- Maintain a history of worker exposure
Step #2: Selecting Air Sampling Methods

- Inventory Chemicals / Agents to which workers are exposed
- Number of employees to be evaluated
- Frequency of cyclic work process
- Duration of exposure(s)
Step #2: Selecting Air Sampling Methods

- Consistency of exposures
- Mobility of workers in relation to process
- Control measures in effect
- Employee break and lunch habits
Step #3-Determine Relevant Exposure Factors

Acute Effects
Sub-Acute
Chronic
1. 8-hour time-weighted averages (TWAs)
2. Short-Term Exposure Limits (STELs)
3. Ceiling Values
4. Life-Weighted Average
Step #4: Selecting Air Sampling Equipment

- Personal Monitors (preferred)
- Area Samples (Zones)
- Dust, Fume, Mist, Gas or Vapor
- Direct Reading Instrument
- Detector Tubes
- Diffusion Badges
- Sample Collection Media
Sampling Selection Criteria

- Comprehensive
- Convenient
- Cost Effective
- Sensitive
- Selective
- Rapid
Comprehensive

☐ SENSITIVE TO ALL CONTAMINANTS THAT COULD RESULT IN ADVERSE HEALTH EFFECTS.
Convenient

- PORTABLE, RUGGED and QUIET
- EASILY WORN WITHOUT CHANGES IN NORMAL BEHAVIOUR
- LOW POWER CONSUMPTION
- BATTERY OPERATED
- STABILIZATION TIME < 15 minutes
- TEMPERATURE RANGE -20° to 40° C
- HUMIDITY RANGE 0 - 100 %
Cost Effective

- NOT PROHIBITIVE TO BUY
- INEXPENSIVE TO OPERATE
- READILY AVAILABLE COMPONENTS
- FEW CONSUMABLE PARTS
- LOW MAINTENANCE
LoD < HEALTH EFFECTS LEVEL
0.1 TIMES LEVEL OF INTEREST
RANGE 0.1 - 10 X LEVEL OF INTEREST
PRECISION AND ACCURACY +/- 5%
EASY AND ACCURATE CALIBRATION
Selective

- LIMITED RESPONSE TO CHEMICALLY SIMILAR COMPOUNDS PRESENT WITH ANALYTE OF INTEREST
Rapid

- SHORTER SAMPLING AND ANALYSIS TIMES COMPARED WITH BIOLOGICAL RESPONSE
- FAST RESPONSE TO CONCENTRATION CHANGES
- RESPONSE TIME 90% < 30 seconds
- RS-232 OR EQUIVALENT OUTPUT
Step #5: Establish Sampling Protocol

QUESTIONS TO BE ANSWERED

☐ Data to be collected (who, what)
☐ Location to sample (where)
☐ Time to sample (when)
☐ Collection technique (how)
☐ Analytical technique (how)
☐ Number of samples (how many)
☐ Data analysis techniques (what kind)
Personal Monitors

ADVANTAGES

- Measure contaminant at or near breathing zone
- Worn by an individual during their daily activities
- Provides an integrated measure of exposure
- Useful in epidemiological studies
Personal Monitors

DISADVANTAGES

- Collecting a sufficient mass of specific contaminants
- Specific, detailed sampling and analytical methods must be developed to characterize chemicals
- Time Delay in receiving analytical results from lab
- Sampler size and weight and fragility
- Worker may be reluctant to wear sampler
- Test equipment may alter workers routine
Step #6-Consult With a Qualified Laboratory

A qualified analytical laboratory can assist you in choosing sampling methods most appropriate to the environment being sampled.
Step #7-Choose An Approved Air Sampling Method

US AGENCIES THAT PUBLISH AIR SAMPLING METHODS

• National Institute for Occupational Safety and Health (NIOSH)
• Occupational Safety and Health Administration (OSHA)
• Environmental Protection Agency (EPA)
Step #8-Contact Lab For Additional Assistance

- Lab Catalogs often contains air sampling guides that summarize sampling methods for individual chemicals published by NIOSH, OSHA and EPA.
- All critical parameters such as exposure limits, recommended sampling time, flow rate and air volume are listed.
- Collection media is clearly specified.
Step #9-Choose Your Equipment

An IH utilizes all resources available to determine the best air sampling method. Several methods may be required in the same workplace.

- **Active Samplers**
 - Air Sampling Pumps
 - Pump Flowmeters (Calibrators)
 - Collection Media

- **Passive Samplers**
 - Diffusion badges
ACTIVE SAMPLING

...is the collection of airborne hazards by means of a forced movement of air by an air sampling pump through the appropriate sampling media. The pump is used to collect and/or concentrate the chemical of interest onto the sampling media.
THREE KEY ELEMENTS OF ACTIVE SAMPLING

• A sampling pump
Something to pull or push air

• The sampling media
Something to pull or push the air through

• A calibrator
Something to indicate how much air has been pulled or pushed
PASSIVE SAMPLING

...is defined as the collection of airborne gases and vapors at a rate controlled by a physical process such as diffusion through a static air layer or permeation through a membrane WITHOUT the active movement of air through an air sampling pump.
Types of Passive Samplers

- Organic Vapor Sampler
- Aldehyde Sampler
- Inorganic Mercury Sampler
MOST PASSIVE SAMPLERS OPERATE BY DIFFUSION.

Diffusive samplers rely on the movement of contaminant molecules across a concentration gradient which can be defined by Fick’s First Law of Diffusion.
Chemicals will diffuse from an area of high concentration in the air to an area of low concentration on the sampler and the rate of diffusion for individual chemicals can be determined.
WHEN CHOOSING A PASSIVE SAMPLER

• Be sure that it has been tested and verified to work effectively for the chemical of interest. Otherwise, you should use a validated active sampling method for compliance purposes.

• Be sure to note the sampling rate in ml/min given by the supplier along with the minimum and maximum sampling times.
TO COLLECT A PASSIVE SAMPLE

• Simply open the sampler at the sampling site and attach it to the worker in the breathing zone or hang in an area.
• It is important that there be some degree of air movement at the sampling site. Placement of the sampler in stagnant air will cause “starvation” and will cause low results to occur.
The following sections describe sampling using a variety of sampling media:
- Sorbent Tubes
- Filters
- Impingers
- Sampling Bags
- Passive Samplers
Many sampling methods require the use of sorbent tubes for sampling gases and vapors.

A sorbent tube is a small glass tube normally filled with two layers of a solid sorbent material.
Sorbent Sample Tube With Backup Sorbent Layer
COMMON SORBENT MATERIALS

• Activated Charcoal
• Silica Gel
• Tenax
• XAD-2
• Chromosorbs

The sorbent used to collect specific chemicals will be specified in the sampling method.

SLIDE 59
TO COLLECT A SAMPLE WITH SORBENT TUBES

- The end tips of the tube are broken and a known volume of air is drawn through the tube using an air sampling pump that has been calibrated to the flow rate specified in the sampling method.
- Airborne chemicals are trapped by the first layer with the back-up layer assuring complete removal of chemicals from the air.
SORBENT TUBE SAMPLING TRAIN
OSHA Versatile Samplers
A Breakthrough for Multi-Phase Sampling

- Sorbent and Filter combined in one tube
- Collects vapors and aerosols
- Available with a variety of sorbents
- For pesticides, TNT, DNT, and phthalates
Multiple Bed Tubes

An Advancement for Environmental Sampling

- Tubes contain multiple layers of different types of sorbent
- Different classes of chemicals can be trapped in different layers of sorbent
- Tubes available for solvent or thermal desorption
- Custom tubes are available from SKC with almost any sorbent
THERMAL DESORPTION

• Allows for improved sensitivity--down to sub-ppb
• Nearly 100% recovery from media
• Suitable for ambient, indoor air and environmental studies
Precautions When Using Thermal Desorption

- Make sure size of tubes is compatible with thermal desorber being used.
- Remember that tubes must be heat purged before use.
- Do not use solvent desorption tubes for thermal desorption applications.
SKC VOST SAMPLERS
For Sampling Stationary Sources

Volatile Organic Sampling Trains

For EPA Methods 0030 and 0031
EPA Method 0031
POLYURETHANE FOAM

A Novel New Sorbent

• Specified in EPA Methods for Organochlorine Pesticides, PCBs, PNAs and PCDDs
• PUF/Sorbent Combinations Available with Tenax, XAD-2 or other sorbents
• High Volume and Low Volume Tubes Available from SKC
• SKC PUF Sorbent Refilling Service Saves You Money
POLYURETHANE FOAM (PUF) TUBE
PUF “SANDWICHES”
Combine PUF and Sorbent

- Extends applications to more volatile compounds
- Standard sorbents are Tenax or XAD-2
- Low volume tubes used with personal pumps
- High volume tubes used with GMW Sampler
COATED FILTERS
A Great Media to Trap Unstable Compounds

Liquid mediums on filters derivatize the chemical of interest

This produces a more stable compound for storage and analysis
COATED FILTERS AVAILABLE FROM SKC
To Sample for a Variety of Chemicals

- Fluorides
- Diisocyanates
- Methylene Bisphenyl Isocyanate
- Glutaraldehyde
- Organic Amines
- Mercaptans
- Hydrogen Sulfide
- Acetic Anhydride
- Chlorine
- Bromine
- Sulfur Dioxide
AFTER SAMPLE COLLECTION

The tube is capped and sent to a qualified laboratory for analysis.

There the sorbent is removed and the trapped chemicals are extracted using either solvents or heat and identified and quantified using gas chromatography or other laboratory equipment.
In some cases, it may be desirable to collect the entire air sample in a special bag designed for that purpose.

This type of sample is termed a grab or instantaneous sample.
GRAB SAMPLES

• Are usually taken for short periods of time to indicate peak airborne concentrations

• Can be used to determine TWA exposures in areas where chemical levels remain constant
TO COLLECT A SAMPLE WITH SAMPLE BAGS

- Pumps with an exhaust or pressure port can be used to push air into a sampling bag that is connected to the pump with teflon tubing.
- Alternatively, bags can be placed into a chamber which is evacuated using a pump to fill the bag by negative pressure.
FILLING A BAG BY POSITIVE PRESSURE
FILLING A BAG BY NEGATIVE PRESSURE
AFTER SAMPLE COLLECTION

• Bags containing the sample can be analyzed in the field using direct reading instruments.

• Bags can also be shipped to the laboratory where they can be analyzed by gas chromatography or other laboratory equipment.
ACTIVE SAMPLING OF GASES AND VAPOR S (IMPINGERS)

Some chemical hazards such as acids, ozone, chlorine and formaldehyde can be sampled using impingers.

Impingers are specially designed glass bottles that are filled with a collection liquid specified in the sampling method for specific chemicals.
IMPINGERS
In some cases, the impinger nozzle is fritted or modified with thousands of small holes. This disperses the air and allows for better contact between the air sample and the impinger liquid.
TO COLLECT A SAMPLE WITH IMPINGERS

A sample pump is used to bubble air through the impinger which contains a liquid medium that has been specified in the method.

The liquid will physically dissolve or chemically react with the chemical of interest.

SLIDE 82
IMPINGER SAMPLING TRAIN
AFTER SAMPLE COLLECTION

• The liquid is removed from the impinger and sent to the laboratory for analysis.

• The impinger can then be cleaned and reused for future samples.
AFTER SAMPLE COLLECTION

- Cover the sample opening to stop sample collection.
- Properly label the sample.
- Ship to the laboratory for chemical analysis.
<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Examples of Analyte Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/ flame ionization detector</td>
<td>PAHs, ketones, halogenated hydrocarbons, alcohols, ethers, aromatic hydrocarbons</td>
</tr>
<tr>
<td>GC/ photoionization detector</td>
<td>ethylene oxide, tetraethyl lead, tetramethyl lead</td>
</tr>
<tr>
<td>GC/ nitrogen phosphorus detector</td>
<td>acrolein, nicotine, acetone cyanohydrin, organophosphate pesticides</td>
</tr>
<tr>
<td>GC/ electron capture detector</td>
<td>butadienes, pentadienes, chlordane, polychlorinated benzenes, PCBs</td>
</tr>
<tr>
<td>GC/ flame photometric detector</td>
<td>mercaptans, carbon disulfide, nitromethane, tributylphosphate</td>
</tr>
<tr>
<td>GC/ thermal conductivity detector</td>
<td>carbon dioxide</td>
</tr>
</tbody>
</table>
Analytical Approach Diversity

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Examples of Analyte Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC/ mass spectrometry</td>
<td>aldehyde screening</td>
</tr>
<tr>
<td>HPLC/ ultraviolet detector</td>
<td>acetaldehyde, anisidine, p-chlorophenol, diethylenetriamine, p-nitroaniline</td>
</tr>
<tr>
<td>ethylenediamine, maleic anhydride, p-nitroaniline</td>
<td></td>
</tr>
<tr>
<td>HPLC/ electrochemical detector</td>
<td>isocyanates</td>
</tr>
<tr>
<td>Visible absorption spectrophotometry</td>
<td>acetic anhydride, ammonia, formaldehyde, hydrazine, nitrogen dioxide, phosphine</td>
</tr>
<tr>
<td>Ion chromatography</td>
<td>aminoethanol compounds, chloroacetic acid, inorganic acids, iodine, hydrogen sulfide, sulfur dioxide</td>
</tr>
<tr>
<td>chlorine,</td>
<td></td>
</tr>
</tbody>
</table>

A clear and complete "chain of custody must be observed"

Layout of cover page for NIOSH sampling and analytical methods.
Typical chromatogram produced using a FID and showing separation of n-tetradecane (retention time 14.540 min), n-pentadecane (retention time 15.573 min), and n-hexadecane (retention time 16.802 min).
Typical Mass Spectrum for Tetradecane Showing the Relative Abundance of Each Mass Fragment
Commonly Used Direct-Reading Instruments for Gases and Vapors

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Common Analytes</th>
<th>Principle of Operation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustible wire—test gas gas detectors</td>
<td>Combustible gases and vapors</td>
<td>Usually measured in wire (sometimes in the presence of a catalyst).</td>
<td>Hot</td>
</tr>
<tr>
<td>Colorimetric detectors (either as a liquid or in some cases an impregnated paper or tape)</td>
<td>Various vapors including formaldehyde, hydrogen sulfide, sulfur dioxide, toluene diisocyanate (specific)</td>
<td>Reaction reagent</td>
<td>1 ppm.</td>
</tr>
<tr>
<td>Electrochemical sensors</td>
<td>Chemical oxidation of test gas</td>
<td>Carbon monoxide, nitric oxide, nitrogen dioxide, hydrogen sulfide, sulfur dioxide (specific)</td>
<td>1 to 3000 ppm</td>
</tr>
</tbody>
</table>
Commonly Used Direct-Reading Instruments for Gases and Vapors (continued)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Common Analytes</th>
<th>Principle of Operation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared gas to low analyzers</td>
<td>Organic and inorganic gases and Measures infrared absorbance of test gas</td>
<td>Measures infrared absorbance of test gas</td>
<td>Sub-ppm</td>
</tr>
<tr>
<td></td>
<td>vapors (specific)</td>
<td></td>
<td>percent</td>
</tr>
<tr>
<td>Metal oxide ppm sensors</td>
<td>Hydrogen sulfide, nitro, amine, alcohol, and halogenated hydrocarbons (specific)</td>
<td>Metal oxide sensor is chemically reduced by the gas, increasing its electrical resistance</td>
<td>1 to 50 ppm</td>
</tr>
<tr>
<td>Thermal conductivity sensors</td>
<td>Carbon monoxide, carbon dioxide, nitrogen, oxygen, methane, ethane, propane, and butane</td>
<td>Percentage gas</td>
<td>vapor</td>
</tr>
<tr>
<td>Portable gas packed column</td>
<td>Organic and inorganic gases and 0.1 to 10,000 ppm vapors (specific)</td>
<td>Uses a packed column to separate complex chromatographs of gases. Detectors available include flame ionization, electron capture, thermal conductivity, flame photometric, and photoionization</td>
<td>3</td>
</tr>
</tbody>
</table>
Commonly Used Direct-Reading Instruments for Gases and Vapors (continued)

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Common Analytes</th>
<th>Principle of Operation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detectors for Gas Chromatographs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron capture</td>
<td>Halogenated hydrocarbons, nitrous oxide, and compounds containing cyano or nitro groups</td>
<td>Uses a radioactive source such as 63Ni to supply energy to the detector that monitors the intensity of the electron beam arriving at a collection electrode. When an electron-capturing species passes through the cell the intensity of the electron beam decreases.</td>
<td>0.1 ppb to low ppm</td>
</tr>
<tr>
<td>Flame ionization</td>
<td>Organic compounds including aliphatic and aromatic hydrocarbons, ketones, alcohols, and halogenated hydrocarbons</td>
<td>Creates organic ions by passing a hydrogen gas through flame. Measures conductivity of the flame.</td>
<td>0.1 to 100,000 ppm</td>
</tr>
<tr>
<td>Photoionization</td>
<td>Most organic compounds, particularly aromatic compounds</td>
<td>Creates ions by exposing test gas to ultraviolet light. Measures conductivity of the gases in the light field.</td>
<td>0.2 to 4 ppm</td>
</tr>
</tbody>
</table>
Commonly Used Aerosol Monitors

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Sample Flow</th>
<th>Size Range</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-scattering photometers</td>
<td>passive to 100 L/min</td>
<td>0.1 to 20 μm</td>
<td>0.0001 μm/m³ to 200 g/m³</td>
</tr>
<tr>
<td>200 g/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light-scattering particle counters</td>
<td>0.12 L/min to 28 L/min</td>
<td>0.1 to 8000 m (up to 32,000 μm for drop size analyzers)</td>
<td>1 particle/L to 10⁵ particles/cm³</td>
</tr>
<tr>
<td>10⁵ particles/cm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condensation nucleus counters</td>
<td>0.003 L/min to 4.2 L/min</td>
<td>1.6 nm to 20 nm</td>
<td>0.1 to 10⁶</td>
</tr>
<tr>
<td>particles/cm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Particle Aerosol Relaxation</td>
<td>0.5 to 5 L/min</td>
<td>0.3 to 10 μm</td>
<td><</td>
</tr>
<tr>
<td>Time (SPART)</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Beta attenuation aerosol mass</td>
<td>15 L/min</td>
<td>0.05 to 35 μm</td>
<td><</td>
</tr>
<tr>
<td>10 μm 10 mg/m³ max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>monitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoelectric crystal microbalance</td>
<td>0.24 to 1 L/min</td>
<td>0.05 to 35 μm</td>
<td>100 g/m³ to</td>
</tr>
<tr>
<td>100 mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapered Element Oscillating</td>
<td>NA</td>
<td>0.5 to 35 μm</td>
<td>5 μg/m³ to</td>
</tr>
<tr>
<td>Microbalance (TEOM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 mg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gases Detectible by Electrochemical Sensors

- Ammonia
- Arsine
- Bromine
- Carbon dioxide
- Carbon monoxide
- Chlorine
- Ethylene oxide
- Fluorine
- Formaldehyde
- Formic acid
- Freon
- Germane
- Hydrazine
- Hydrochloric acid
- Hydrogen
- Hydrogen chloride
- Hydrogen cyanide
- Hydrogen fluoride
- Hydrogen sulfide
- Nitric acid
- Nitric oxide
- Nitrogen dioxide
- Nitrogen oxides
- Nitrous oxide
- Oxygen
- Ozone
- Phosgene
- Phosphine
- Silane
- Silicon tetrafluoride
- Sulfur dioxide
- Tetrachloroethylene
- Trichloroethylene
- Tungsten hexafluoride
A Typical Electrochemical Sensor

MEMBRANE (1)

SENSEING

ELECTROLYTE (2)

COUNTING
A Wheatstone Bridge

Diagram of a Wheatstone Bridge circuit with labeled components:
- Electrical Supply
- (2) Wheatstone Bridge Circuit
- Inlet
- (1) Detector Filament
- To Pump
- Signal Amplifier
- Output
- Compensator Filament
Combustible gas instrument response curve for conversion of a meter reading to concentration.
Sensor response range from lower explosive limit to upper explosive limit.
Ionization Potentials of Selected Chemicals

<table>
<thead>
<tr>
<th>Compound</th>
<th>IP (eV)</th>
<th>Compound</th>
<th>IP (eV)</th>
<th>Compound</th>
<th>IP (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>10.21</td>
<td>Dimethyl amine</td>
<td>8.24</td>
<td>Methyl ethyl ketone</td>
<td>9.53</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>10.37</td>
<td>Ethyl acetate</td>
<td>10.11</td>
<td>Methyl mercaptan</td>
<td>9.44</td>
</tr>
<tr>
<td>Acetone</td>
<td>9.69</td>
<td>Ethyl amine</td>
<td>8.86</td>
<td>Morpholine</td>
<td>8.88</td>
</tr>
<tr>
<td>Acrolein</td>
<td>10.10</td>
<td>Ethyl benzene</td>
<td>8.76</td>
<td>Nitrobenzene</td>
<td>9.92</td>
</tr>
<tr>
<td>Allyl alcohol</td>
<td>9.67</td>
<td>Ethyl bromide</td>
<td>10.29</td>
<td>Octane</td>
<td>9.9</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>10.20</td>
<td>Ethyl butyl ketone</td>
<td>9.02</td>
<td>Pentane</td>
<td>10.35</td>
</tr>
<tr>
<td>Ammonia</td>
<td>10.15</td>
<td>Ethyl chloride</td>
<td>10.98</td>
<td>2-Pentanone</td>
<td>9.39</td>
</tr>
<tr>
<td>Aniline</td>
<td>7.70</td>
<td>Ethylene chlorohydrin</td>
<td>10.90</td>
<td>Phosphine</td>
<td>9.96</td>
</tr>
<tr>
<td>Benzene</td>
<td>9.25</td>
<td>Heptane</td>
<td>10.07</td>
<td>Propane</td>
<td>11.07</td>
</tr>
<tr>
<td>Benzyl chloride</td>
<td>10.16</td>
<td>Hydrogen cyanide</td>
<td>13.91</td>
<td>n-Propyl acetate</td>
<td>10.04</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>9.07</td>
<td>Hydrogen sulfide</td>
<td>10.46</td>
<td>n-Propyl alcohol</td>
<td>10.20</td>
</tr>
<tr>
<td>n-Butyl amine</td>
<td>8.71</td>
<td>Isoamyl acetate</td>
<td>9.90</td>
<td>Propylene dichloride</td>
<td>10.87</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>10.13</td>
<td>Isoamyl alcohol</td>
<td>10.16</td>
<td>Propylene oxide</td>
<td>10.22</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>9.07</td>
<td>Isopropyl acetate</td>
<td>9.99</td>
<td>Styrene</td>
<td>8.47</td>
</tr>
<tr>
<td>Crotonaldehyde</td>
<td>9.73</td>
<td>Isopropyl alcohol</td>
<td>10.16</td>
<td>Toluene</td>
<td>8.82</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>9.98</td>
<td>Isopropyl alcohol</td>
<td>10.16</td>
<td>Triethylamine</td>
<td>7.50</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>9.14</td>
<td>Isopropyl ether</td>
<td>9.20</td>
<td>Vinyl chloride</td>
<td>10.00</td>
</tr>
<tr>
<td>Cyclohexene</td>
<td>8.95</td>
<td>Methanol</td>
<td>10.85</td>
<td>Water</td>
<td>12.61</td>
</tr>
<tr>
<td>Diborane</td>
<td>11.4</td>
<td>Methyl acetate</td>
<td>10.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>11.06</td>
<td>Methyl acrylate</td>
<td>10.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m-Xylene</td>
<td>8.56</td>
</tr>
</tbody>
</table>
PID: The HNU 101 Models
PID: The Photovac 2020
Relative Response of the OVA (FID Instrument) to Different Chemicals (if Calibrated to Methane)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Relative Response (%)</th>
<th>Compound</th>
<th>Relative Response (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>25</td>
<td>Ethylene</td>
<td>85</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>80</td>
<td>Ethylene oxide</td>
<td>70</td>
</tr>
<tr>
<td>Acetone</td>
<td>60</td>
<td>Hexane</td>
<td>75</td>
</tr>
<tr>
<td>Acetylene</td>
<td>225</td>
<td>Isopropyl alcohol</td>
<td>65</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>70</td>
<td>Methane (calibrant)</td>
<td>100</td>
</tr>
<tr>
<td>Benzene</td>
<td>150</td>
<td>Methanol</td>
<td>12</td>
</tr>
<tr>
<td>n-Butane</td>
<td>63</td>
<td>Methyl ethyl ketone</td>
<td>80</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>28</td>
<td>Methylene chloride</td>
<td>90</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>10</td>
<td>Octane</td>
<td>80</td>
</tr>
<tr>
<td>Chloroform</td>
<td>65</td>
<td>Phenol</td>
<td>54</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>85</td>
<td>Tetrachloroethylene</td>
<td>70</td>
</tr>
<tr>
<td>Diethylamine</td>
<td>75</td>
<td>Toluene</td>
<td>110</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>18</td>
<td>Trichloroethylene</td>
<td>70</td>
</tr>
<tr>
<td>Ethane</td>
<td>110</td>
<td>Vinyl chloride</td>
<td>35</td>
</tr>
<tr>
<td>Ethanol</td>
<td>25</td>
<td>o-Xylene</td>
<td>116</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Organic Vapor Analyzers (OVA): The Century TVA 1000
Specific Infrared Absorption Bands for Hydrocarbons

<table>
<thead>
<tr>
<th>Chemical Groups</th>
<th>Absorption Band (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanes (C-C)</td>
<td>3.35–3.65</td>
</tr>
<tr>
<td>Alkenes (C=C)</td>
<td>3.25–3.45</td>
</tr>
<tr>
<td>Alkynes (C_C)</td>
<td>3.05–3.25</td>
</tr>
<tr>
<td>Aromatic</td>
<td>3.25–3.35</td>
</tr>
<tr>
<td>Substituted aromatic</td>
<td>6.15–6.35</td>
</tr>
<tr>
<td>Alcohols (-OH)</td>
<td>2.80–3.10</td>
</tr>
<tr>
<td>Acids (C-OOH)</td>
<td>5.60–6.00</td>
</tr>
<tr>
<td>Aldehydes (COH)</td>
<td>5.60–5.90</td>
</tr>
<tr>
<td>Ketones (C=O)</td>
<td>5.60–5.90</td>
</tr>
<tr>
<td>Esters (COOR)</td>
<td>5.75–6.00</td>
</tr>
<tr>
<td>Chlorinated (C-Cl)</td>
<td>12.80–15.50</td>
</tr>
</tbody>
</table>
An Infrared Spectrum for the Chemical Sulfur Hexafluoride.

Y axis is absorbance unit.
Portable Infrared Analyzer:
The MIRAN Sapphire Analyzer
Schematic for a Typical Gas Chromatograph

[Diagram of gas chromatograph components: Carrier gas, column oven, injection port, packed column, flow control, detector, and recorder.]
Portable Field Gas Chromatograph: The Photovac Voyager
Detector Tubes, or Colormetric Indicator Tubes, and Pumps From National Draeger
A New Generation of Tubes and Pumps From National Draeger
Multiple Particle Optical Monitor: The MINIRAM
Selecting Sampling Method / Equipment

• Is it comprehensive?
• Is it convenient?
• Is it cost effective?
• Is it sensitive enough?
• Is it selective enough?
• Does it provide rapid response/results?
Airborne particulate hazards may include:

- Dusts
- Fumes
- Mists
- Smokes
THE HAZARD POTENTIAL OF AIRBORNE PARTICULATES

Is determined by several parameters including:

• Chemical composition
• Mass concentration
• Size characteristics
Instruments to Classify Particle Size

Determine the deposition site in the respiratory tract. Smaller particles will tend to deposit deep into the gas exchange region of the lung.
Characteristics of Particles and Particle Dispersoids

(Source: C.E. Lappler, SRI Journal 5:94 [1961].)
To more appropriately assess the possible health effects of airborne particulate matter, exposure guidelines have typically been issued for different aerodynamic sizes of particles. [example USBM]
Regions of the Respiratory Tract

- **NP (Nasopharyngeal) region**: Conditions inhaled air to body temperature and essentially 100% relative humidity and efficiently removes larger particles.
- **TB (Tracheobronchial) region**: Conducts inhaled air quickly and evenly from the mouth and nose to the pulmonary spaces.
- **P (Pulmonary) region**: Performs the gas exchange function of respiration.

(a) the NP region conditions inhaled air to body temperature and essentially 100% relative humidity and efficiently removes larger particles; (b) the TB region conducts inhaled air quickly and evenly from the mouth and nose to the pulmonary spaces; (c) the P region performs the gas exchange function of respiration.
WORKPLACE EXPOSURE GUIDELINES

- Have traditionally been expressed as
 - *TOTAL DUST
 - *RESPIRABLE DUST
TOTAL DUST

• Is collected by using a filter of a type and pore size appropriate to the particulate being sampled.

• The filter is loaded into a cassette and connected to a sampling pump that has been calibrated to a flowrate of at least 1 L/min.

• Samples are collected in an area or in the breathing zone of workers.
Aerosol Particle Collection Mechanisms

(a) sedimentation — at terminal (maximum) settling velocity, the fluid drag and buoyant forces will exactly offset the particle’s weight; (b) inertial impaction — the particle’s inertia carries it across airflow streamlines as the air changes direction; and (c) interception — the flow streamline passes the collecting body (such as a filter fiber) within a distance of one-half the particle’s diameter.
ACTIVE SAMPLING FOR PARTICULATES

- To sample for particulates, a filter loaded into a filter cassette will be used.
- The filter diameter, type and pore size will vary depending on the chemical being sampled and will be specified in the sampling method.
Commonly used filter holders include (a) the 37-mm three-piece styrene acrylonitrile cassette used as shown or in open-face mode with one end removed, and (b) the polypropylene 25-mm cassette with cowl, specifically for use in asbestos sampling (end cap shown is removed during sampling) (graphics courtesy SKC, Inc., Eighty Four, Pa.).
FILTER SAMPLING TRAIN
Filters can be analyzed by a variety of methods depending upon the chemical:

- Gravimetric-Weighing the sample before and after collection
- Atomic Absorption/ICP-Performing chemical analysis to determine specific compounds
- Microscopic-Counting individual fibers
RESPIRABLE DUST

- Is collected onto a filter of a type and pore size that is appropriate for the particulate being sampled.

- Preceding the filter, however, is a particle size-selective device, typically a cyclone, that will separate the respirable fraction from the non-respirable fraction when connected to a pump sampling at the designated flow rate.
RESPIRABLE DUST CYCLONES
Suspended particles are captured by increasing centrifugal forces as the air spirals down the cone of the cyclone; the airflow and uncaptured particles spiral back up the central axis and exit through the top. In a personal respirable aerosol sampler the exiting air, carrying the respirable particle fraction, passes through a cassette filter, where the particles are captured for gravimetric or other analysis.
Some regulations require the measurement of respirable dust.

Respirable dust is dust so small in size that it can get through the protective mechanisms of the human body and get down deep into the gas exchange region of the lung. To sample respirable dust, you will need to use a cyclone.
When sampling with cyclones

The smaller respirable particles will be collected onto the filter for subsequent analysis.

Larger particles will fall into the grit pot and will be discarded.
Exploded view of a personal respirable dust sampling assembly incorporating an SKC aluminum cyclone and 37-mm three-piece filter cassette. Nonrespirable particles are collected in the grit pot at the base of the cyclone, and the respirable fraction is collected on the filter for subsequent weighing or chemical analysis (graphic courtesy SKC, Inc.).
Note About Cyclone Sampling

- Be sure to calibrate your pump to the flow rate specified to achieve the desired 50% cut-point.

- Cut-point is the size of dust that the cyclone will collect with 50% efficiency.
NOTE ABOUT CYCLONE SAMPLING

• NIOSH and ACGIH recommend a 4 micron cut-point.

• To achieve this cut-point, a flow rate of 2.5 l/min is recommended using the SKC aluminum cyclone.
NEW WORKPLACE EXPOSURE GUIDELINES

- Inhalable Particulate Mass
- Thoracic Particulate Mass
- Respirable Particulate Mass

Adopted by several International agencies:
INHALABLE DUST

• Is a new term used to describe dust that is hazardous when deposited anywhere in the respiratory tree including the nose and mouth

• Includes the larger and the smaller particles
IOM Inhalable Dust Sampler

Developed by J.H. Vincent and D. Mark at the Institute of Occupational Medicine, Edinburgh, Scotland. For gravimetric analysis the interior cassette, containing the filter, is weighed before and after sampling. The sampler meets international sampling criteria for inhalable particulate matter (graphic courtesy SKC, Inc.).
TO COLLECT A SAMPLE FOR INHALABLE DUST

- A 25-mm filter is loaded into the cassette using forceps and wearing gloves.
- The filter and cassette are equilibrated to standard laboratory conditions then weighed as a unit.
- The sample is collected at 2 L/min.
- The sample is weighed again following the procedures described above.
AFTER SAMPLE COLLECTION

- Remove the cassette containing the filter from the sampling head and equilibrate the cassette and filter again for 24 hours to get a post-sample weight.
- Alternatively, chemical analysis can be done on the filter sample.
Inertial Impactors

- (a) conventional jet-to-plate impactor collecting a single size fraction (say all particles over 10 µm);
- (b) multistage or cascade impactor in which each stage collects a different size fraction; and
- (c) virtual impactor or dichotomous sampler in which size fractions are separated but not removed from the airstream.
Liquid Impingers

(a) multistage impinger in which a jet impinges on a wet surface, and (b) all glass impinger in which a jet impinges on a liquid surface or a submerged jet impinges on the bottom of the impinger.
Analysis of Particle Count Data

<table>
<thead>
<tr>
<th>Lower Interval Size (µm)</th>
<th>Upper Interval Size (µm)</th>
<th>Midpoint Number in Interval (d_i) (µm)</th>
<th>(n_i)</th>
<th>Fraction Cumulative Interval (d_i) (%)</th>
<th>Fraction Cumulative Interval (d_i) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>0.54</td>
<td>0.50</td>
<td>3770</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>0.54</td>
<td>0.63</td>
<td>0.585</td>
<td>13,000</td>
<td>2.56</td>
<td>3.30</td>
</tr>
<tr>
<td>0.66</td>
<td>0.74</td>
<td>0.685</td>
<td>55,100</td>
<td>10.84</td>
<td>14.14</td>
</tr>
<tr>
<td>0.74</td>
<td>0.86</td>
<td>0.80</td>
<td>62,900</td>
<td>12.38</td>
<td>26.52</td>
</tr>
<tr>
<td>0.86</td>
<td>1.0</td>
<td>0.93</td>
<td>98,800</td>
<td>19.44</td>
<td>45.96</td>
</tr>
<tr>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
<td>109,000</td>
<td>21.45</td>
<td>67.41</td>
</tr>
<tr>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td>98,800</td>
<td>19.44</td>
<td>86.85</td>
</tr>
<tr>
<td>1.4</td>
<td>1.6</td>
<td>1.5</td>
<td>37,200</td>
<td>7.32</td>
<td>94.17</td>
</tr>
<tr>
<td>1.6</td>
<td>1.8</td>
<td>1.7</td>
<td>17,000</td>
<td>3.35</td>
<td>97.52</td>
</tr>
<tr>
<td>1.8</td>
<td>2.2</td>
<td>2.0</td>
<td>9710</td>
<td>1.91</td>
<td>99.43</td>
</tr>
<tr>
<td>2.2</td>
<td>2.5</td>
<td>2.35</td>
<td>2850</td>
<td>0.56</td>
<td>99.99</td>
</tr>
<tr>
<td>2.5</td>
<td>2.9</td>
<td>2.7</td>
<td>52</td>
<td>0.01</td>
<td>100</td>
</tr>
</tbody>
</table>

Total: 508,182
The aerosol particle sizes are approximately lognormally distributed if a straight line provides a good fit to the measurement data. CMD and GSD are determined from the plotted line. Count-based distributions result from optical measurement instruments that estimate particle size by examining particle light scattering behavior.
Sampling Gases and Vapors

For most industrial hygiene applications- **GASES AND VAPORS** are sampled at low flow rates to allow effective adsorption to occur onto the sorbent material. **PARTICULATES** are sampled at high flow rates so that airborne particles can be effectively trapped onto the filter material.
LOW FLOW PUMP

SLIDE 145
HIGH FLOW PUMP
also with low flow capabilities
Calibration Standards

- Exposure Chambers
- Primary Standards
- Secondary Standards
- Calibration Gases
- Calibration Curves
- Ambient Measurements
- Standard Blanks
Manual Flowmeter Kit Model 302 With a Range of 100 to 4000 ml/min
An Electronic Soap Bubble Flowmeter

The Gilibrator-2, shown being used to calibrate a personal air sampling pump using one of three possible interchangeable cells (courtesy Sensidyne Inc., Clearwater, Fla.).
Field Rotameters

A variety of lightweight (acrylic plastic), single float, field rotameters (courtesy Key Instruments, Trevose, Pa.).
Commonly Used Aerosol Monitors

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Sample Flow</th>
<th>Size Range</th>
<th>Concentration Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-scattering photometers to 200 g/m³</td>
<td>passive to 100 L/min</td>
<td>0.1 to 20 μm</td>
<td>0.0001 μm/m³</td>
</tr>
<tr>
<td>Light-scattering particle counters to 10^5 particles/cm³</td>
<td>0.12 L/min to 28 L/min</td>
<td>0.1 to 8000 m (up to 1 particle/L)</td>
<td>32,000 μm for drop size analyzers</td>
</tr>
<tr>
<td>Condensation nucleus counters particles/cm³</td>
<td>0.003 L/min to 4.2 L/min</td>
<td>1.6 nm to 20 nm</td>
<td>0.1 to 10^6</td>
</tr>
<tr>
<td>Single Particle Aerosol Relaxation Time (SPART)</td>
<td>0.5 to 5 L/min</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Beta attenuation aerosol mass < 10 μm</td>
<td>15 L/min</td>
<td>10 mg/m³ max</td>
<td></td>
</tr>
<tr>
<td>monitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piezoelectric crystal microbalance 100 mg/m³</td>
<td>0.24 to 1 L/min</td>
<td>0.05 to 35 μm</td>
<td>100 g/m³ to 1000 mg/m³</td>
</tr>
<tr>
<td>Tapered Element Oscillating Microbalance (TEOM)</td>
<td>NA</td>
<td>0.5 to 35 μm</td>
<td>5 μg/m³ to 2000 g/m³</td>
</tr>
</tbody>
</table>
Multiple Particle Optical Monitor: The MINIRAM
MICROENVIRONMENTAL MONITOR (MEM)
EXPOSURE GUIDELINES FOR AMBIENT OR INDOOR AIR

• PM 10-Particulate Matter less than 10 um in aerodynamic diameter

• PM 2.5-Particulate Matter less than 2.5 um in aerodynamic diameter
PERSONAL ENVIRONMENTAL MONITOR (PEM)
Purpose/Goals
To evaluate exposure data to facilitate a decision about the acceptability of workplace exposures

Tools
- Professional Judgment
- Experience
- Consensus

Statistical Tools
- Descriptive Statistics (mean, standard deviation, range, number of samples)
- Probability Rules
- Tolerance Limits
- Confidence Intervals on the Mean Exposure
- Control Charts

Outcomes
A decision (regarding the acceptability of exposures) based upon a statistical evaluation and/or professional judgment

Exposure Monitoring

Interpretation and Decision Making

Recommendations and Reporting

Need More Data
Exposure Assessment Strategy
Log-Normal Distribution
Exposure Assessment Strategy

(G)

Recommendations and Reporting

Reevaluation

Basic Characterization

Purpose/Goals
To reevaluate the workplace whenever appropriate

Tools
- Periodic Review
- Based on recommendations from previous report
 (Default frequency: Annual)

Additional Reviews
- Employee Health Complaint
- Process Changes
- Health Surveillance Concern
- New Health-Effect Data
- New Regulation

Outcomes
Reevaluation of the workplace starting from Basic Characterization
Exposure Assessment Strategy

Purpose:
To maintain a record of exposures and conditions to serve as baseline for future exposure assessments and a record for epidemiology.

Tools:
- Written Report of Results
- Archive of Reports
- Potential versus Effective Exposure (Record of use of personal protective equipment)

Outcome:
- Well-maintained exposure record database and recommendations for future sampling frequency and proposed workplace changes; direct communication of results to workers in homogeneous exposure groups.

Convention:
- Exposure Monitoring
- Interpretation and Decision Making
- Recommendations and Reporting
- Modify Controls and Procedures
- Need More Data
- Unacceptable Risk
- Acceptable Exposure

Modified from original by M. A. H. V. M. van Houtte.

SLIDE 159
Mistakes

• A compilation of 50 common mistakes is included in reference file. Example:

• Collection of an air sample in the work environment is rarely a simple, straightforward task. Virtually every method has recommended protocols covering the flow rate, the minimum and maximum sample volumes, and the preparation, handling, and storage of collection media. Competent project preparation must include research into these details. It is often desirable to call a trusted technical consultant at the laboratory you are using to update information found in standard references.

Sampling, Calibration and Errors.ppt
The published literature was reviewed and then a quantitative hydrocarbon solvent exposure database was compiled. The data was then analyzed to determine trends in documented worker exposures to hydrocarbon solvents. It was found that an all too common limitation of the published literature was the incomplete reporting of results by the authors.

Lessons Learned While Compiling a Quantitative Exposure Database from the Published Literature

ExxonMobil Biomedical Sciences, Inc., Annandale, New Jersey
DATA REPORTING PROBLEMS

• Incomplete record of current or historical exposures
• Incomplete / inaccurate exposure assessment for risk assessment
• Poor regulatory decisions
• Failure to protect individuals
Assignment

• Read
 – “Lessons Learned While Compiling a Quantitative Exposure Database from Published Literature”
 – “Characterizing Historical Industrial Hygiene Data: A Case Study Involving Benzene Exposures at a Chemical Manufacturing Facility (1957 – 1987)
 – Convert 100 ppm xylene to mg / M3